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We investigate a Galerkin method for solving the integral equations for three-body scaiter- 
ing at energies above the break-up threshold. The scattering equations that we consider are 
one-dimensional integral equations that arise from a separable potential model. Cubic spline 
approximants with multiple knots are used to construct a non-smooth solution function. 
Numerical results are obtained both for a system of spin-0 (boson) and spin-j (fermion) par- 
ticles interacting via separable two-body potentials. The results demonstrate that our 
numerical treatment of this problem is both robust and accurate with a small number of basis 
functions. ic 1986 Academic Press, Inc. 

1. INTRODUCTION 

The use of separable potentials in the integral equation approach of Faddeev [ I] 
is known to reduce the equations for three-body scattering to a more manageable 
form [2, 31. Nevertheless, the numerical treatment of three-body equations, par- 
ticularly above the break-up threshold, remains a formidable task. 

Several practical methods for solving the integral equations for three-body scat- 
tering above break-up are known. These include the contour rotation method [4], 
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where the integration contour is rotated into the complex momentum plane in 
order to avoid integrating over singularities; and the Pad& method [IS], in which a 
rational expansion approximation is used to sum the multiple scattering series. 

An alternative numerical method to those described above, and one that is also 
advocated as a practical means of solving Faddeev equations, is a projection 
method [6] in which one seeks to expand the solution of the integral equation in 
some finite set of basis functions. A difficulty with this approach is that the success 
of the method often depends on the choice of basis functions for a particular 
problem. Of particular interest, therefore, is the choice of piecewise local inter- 
polants as basis functions. In this way one may hope to avoid the troublesome 
problem of selecting an optimum basis set [7]. An additional advantage of this 
choice of basis functions is that piecewise local interpolation allows considerable 
flexibility in fitting complicated structure into the solution function. 

A collocation method using piecewise Lagrange polynomial functions has been 
used successfully to solve the integral equations for three-body scattering at energies 
above the break-up threshold [S]. It is known, however, that the Lagrange 
polynomial does not yield the best interpolation, and that a better choice is 
provided by the spline [9]. The advantage of using spline functions as a basis for 
solving Faddeev equations has been recognized by several authors [ 10, 111. Recen- 
tly, cubic B-splines have been shown [ 111 to provide an excellent basis for solving 
the equations of [3] in a Galerkin method approach. 

The present paper is devoted to an investigation of the numerical treatment of 
three-body integral equations at energies above the break-up threshold in which use 
is made of a Galerkin method approach with cubic B-spline approximants. The 
numerical procedure is an extension of the method employed in [11] for solving 
three-body scattering below break-up. Novel features of the present problem are a 
logarithmic singularity structure in the kernel, and a non-smooth (C, discontinuity) 
in the solutions of the integral equations. 

Section 2 gives a mathematical formulation of the method for integral equations 
of the second kind. Section 3 gives a brief review of the integral equations for three- 
body scattering. Section 4 describes the numerical procedure, and Section 5 gives 
our numerical results. An appendix describes the origin of the cusp in the three- 
body transition amplitude above break-up. 

2. THEORY 

The problem, from which our physical problem is taken, is the solution to the 
operator equation 

($-X))f=Y, (2.1) 

where f, y E C[a, b], the space of continuous functions defined on the closed inter- 
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val [a, b], 9 is the identity operator, and X is a linear operator defined on a sub- 
set of C[a, 61. 

In the scattering problems we consider here, X is the integral operator given by 

where the kernel K has a Cauchy principal value type singularity. That is, K has the 
form 

K(., t)=& t)/(f--u) (2.3) 

for some UE [n, b]. Also, at some known value y E [a, b] the function f(q) has a 
discontinuous derivative. 

To solve this problem numerically we seek to find an approximation to f which 
satisfies some interpolation property or variational principle. We thus look for an 
approximation that satisfies the properties off. For such a purpose the linear space 
of cubic splines forms an ideal setting. To be precise, let rcN be a partition of the 
interval [a, h], defined by the knots { tj), such that c1= t, d . . . < t, = 6. On this 
partition, together with the extended knots t --2 < t _ i < t, d tl, and t, d fN+ i < 
tN+ 7 6 tN+ 3r we can construct the cubic B-splines. For a partition rrN we can con- 
struct N+ 2 B-splines denoted by {B,; i = O,..., N + 1 j, where Bi is non-zero over 
the interval (tie2, ti+* ) and is a cubic polynomial over each subinterval (ii+;, 
tl+,+l), j= -2,..., 1, with the added restriction that we get C, continuity 
everywhere. Such continuity is obtained if the knots are simple, that is, if ti+, < 
ti+j+12 j= - 2,..., 1. If, however, multiple knots are introduced, then loss of con- 
tinuity ensues. To be precise, if for some j, tj = tj + r ~ then at that point C, continuity 
is obtained, while for tj _, = tj = tj + 1, C, continuity is obtained. Hence, to ensure 
that the approximation emulates the C, continuity off at yl, we place a triple knot 
at q and keep the other knots simple. In all such cases (B,; i= O,..., N + 1 } is a basis 
for the linear space S, of cubic splines with partition rcY. For numerically stable 
methods of evaluating B-splines under all conditions see [12]. 

Using this linear space, we approximate f by the linear combination given by 

N+l 

C uiBz3 

i=O 

(2.4) 

and seek an appropriate set of coefficients (ai>. 
To aid us in this search for appropriate coefficients, we define a residual function 

Y by the relation 

Ncl 

Y= c- a,($-X) B,-y; (2.5) 
i=O 

then (cli) are chosen to minimize Y in some fashion. 
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One such method is to choose N+ 2 abscissae values sj, j = O,..., N+ 1, and then 
to solve the linear system of equations given by 

r(sJ = 0, j= O,..., N+ 1. (2.6) 

This is the method of collocation. The choice of collocation points {sI} is only 
restricted by the Schoenberg-Whitney theorem [13], which requires that 
ti-2 <sic ti+*, i=O,..., N+ 1. For a more elementary proof of this theorem see 
c91. 

As can be expected, a bad choice of collocation points will result in a poor 
approximation. Hence, we choose to calculate our coefficients CL~, i = O,..., N + 1 by 
solving the system of linear equations given by 

(r, Bi) = 0, i= O,..., N+ 1. (2.7) 

where (*, .) defines the inner product on C[a, b], namely 

($> 4) = jb $(x) 4(x) &. (2.8) CI 

This is the classical Galerkin technique. 
To analyze this method, let G, be the mapping of C[a, b] onto S,, such that, 

for $ E C[a, b], GN$ is the best approximation of $ by S, in the norm defined by 
the inner product. That is, 

N+l 

GN$ = C Alibi, 

i=O 

(2.9) 

where /zi are the solutions to the linear system 

N+l 

1 lj(Bj, B,)= ($, B,), j=O ,..., N+ 1. (2.10) 
i=O 

See [6] for the theoretical development of this result. The operator G, is a projec- 
tion operator, which is easily deduced from the properties of cubic splines. 

For our problem we consider 

N+l 

G,r= c A,B,. 
i=O 

(2.11) 

Then to find the 2;s we have to solve 

N+l 

c li(Bi, Bj) = (r, Bj), j= 0 ,..., IV+ 1. (2.12) 
i=O 

Due to the linear independence of our B-spline basis, the solution to this system is 



GALERKIN SOLUTION FOR INTEGRAL EQUATIONS 387 

Ai = 0 for all i, that is, G,r = 0 (the zero function), if and only if (v, Bj) = 0, 
j= O,..., N+ 1. Hence, the Galerkin procedure gives us a solution g E A’, such that 

G,v(y--)g=G,y. (2.13) 

The G,,, here defined is a continuous least squares approximation operator, and 
one property of least squares approximation by cubic splines is that there exists a 
strictly increasing set of abscissae zi, i = O,..., N+ 1, such that ti_? < zj < ti+?, where 
the error of approximation is zero; see [9]. Thus 

U(Ti) = 0, i=O ,..., NS 1, (2.14) 

and, hence, the Galerkin procedure is a collocation procedure with (TV) the set of 
collocation points. 

To solve the system of equations (Y, Bj) = 0, we need to perform two integrations 
numerically. To this end we choose a standard numerical quadrature, namely, 

I bF(X) dxz5 f uiF(.xj), (2.15) 
a j=l 

for some suitably chosen xj, j = I,..., p. Then, for any k = 0 ,..., N + 1, we write 

(r, Bk) = jb r(x) BJX) dx 
u 

Ejcl ujr(xj) Bk(X~), 

while 

r(xj, = “f’ cli [o,(,,) -lab p+ B,(s) ds] - y(x,). 
i=O 

(2.16) 

(2.17) 

The integral in this equation needs careful attention due to the presence of the 
singularity. We write 

For all k such that u $ (tk, tk+ 1) we have 

s f!c+i R(‘(x. s) 
--“-Bi(s) dsz i oq Rx,, sq) 

rk s-24 qy-u 
Bi(Sq): 

q=l 

(2.18 

(2.19 

f 

for suitable sq in the interval (tk, tk + ,). 

581/62,,2-9 
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If u~(tk, t,+l) th en we subtract out the singularity 

s 
f&k+1 R(x. s) 

/’ Bj(s) ds 
rk s-u 

[14] as follows: 

EC 
R(x~, S) Bi(s)-R(Xjy U) Bi(U) 

s-u 

ds + R(xj, u) Bj(u) In 

z-z f w, ‘jxf,) B&J 
q=l 4 

F(xj, u, t 
w, s Bi(u) + &xi, u) Bj(u) In s , 

I I q=l 4 k 

for appropriate sq in the interval (tk, tk+ 1 ). The first term in this expression is the 
usual quadrature formula, while the second and third terms are adjustments to 
account for the singularity. 

Using these equations we obtain a spline approximation g, E S, to our unknown 
functionJ: The numerical results we obtain lead us to believe that the method out- 
lined here does converge with a fourth order rate of convergence. That is, the 
theory developed for a continuous kernel holds for the type of singularity treated 
here. Thus, using the uniform norm, we assume that for some p, 

II f-gNlI G P llf- G.vf II> (2.21) 

analogous to theorem 2 in [6, p. 5 11. Using the Peano kernel theorem [ 151, we 
have 

Ilf-G,vf II GA IIf’4)ll G> (2.22) 

with h, the maximum knot spacing over the knots (to ,..., t,- 1, t, + 1 ,..., t,,,+ 1). Hence 
if our assumption is correct, fourth order convergence is attained. 

3. THREE-BODY INTEGRAL EQUATIONS 

In this section we briefly describe the three-body integral equations. In order to 
test the numerical method described in the previous section, we consider three sim- 
ple cases. The first is a model boson problem, so called because the three particles 
are identical with no spin or isospin. For the second, we choose a system of three 
spin-f and isospin-+ particles in a spin-quartet and isospin-doublet configuration. 
The third is a spin-doublet and isospin-doublet configuration. These last two con- 
figurations are found in the scattering of neutrons from deuterons. 

For each of the above three cases, we shall consider a system of equal mass par- 
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titles and set the particle mass M= 1. We denote by (p, q) the two independent 
Jacobi momentum variables in the three-body center-of-mass frame. Here q is the 
relative momentum between two particles and p is the momentum of the third par- 
ticle relative to the center-of-mass of the other two. The pairwise interactions are 
chosen to be s-wave separable potentials of the Yamaguchi [lb] form 

V,(q, q’) = L(q2 + Pi, ~ l (q” + Pz?, - l, 

where A,,, and p, are strength and range parameters, and m is used to denote inter- 
nal quantum numbers of the interacting pair. In the case of spin-4 particles we use 
different parameters A,, j3, for the spin-triplet (m = t) and spin-singlet (m = s) CXXI- 
figurations. For the boson model we use the m = t interaction. 

For the interactions given in Eq. (3.1) it is known that the Faddeev equations 
reduce 12, 31 to a set of coupled integral equations in one continuous momentum 
variable. We now describe the integral equations for the three cases discussed 
above. 

Consider the scattering of a particle from a bound state of the other two, 
described by quantum number m = I. For a particle with incident momentum k and 
a target with binding energy -E, the scattering energy in the three-body center-of- 
mass frame is 

E=;k”-& (3.2) 

The L = 0 partial wave half-shell transition amplitudes { T,J p; ES i0); m = t, s) 
satisfy a set of coupled integral equations 

T,,( p; E + i0) = Z,,( p, k; E + i0) 

-1s ( Y,,, p, p’; E + i0) T,,,( p’: E + i0) pf2dp’, 
It 

(3.3) 

where the kernels Y,, are given by 

ym,(P,P’; E-t io) =z,,(p,p’; E+ i0) r,(E+ iO- &“,. 13.4) 

The effective three-body potentials Z,, are defined by the integrals 

Z,,(p,p’;E+iO)= -xmn”J1 16Aqr 1 #n(qd 4 
371 -1p2+p’2+pp’y-E-iQ’ (3.5) 

where 

q1= c$p2+p’z +pp’y)? 

q2 = ( p2 + $ p’2 +pp’y)1’2, 
(3.6) 
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and 

cm @m(q) = (q2 + pi, 

is a two-body vertex function. We take C, = 1 and choose the constant C, so that 
the bound state wavefunction is normalized to unity. The constant C, is given by 

c, = P@,(@” + P,)‘l “2, (3.8) 

where CI = 4. 
The constant xrnn in Eq. (3.5) is a spin-isospin recoupling coefficient [2]. For the 

boson model x = 2 and the effective potential is purely attractive. For the spin-quar- 
tet system there is no m = s subsystem and xtr = - 1, which means that the effective 
potential is purely repulsive. For the spin-doublet system xlnn is given by the matrix 

In this case the effective potential has both an attractive and repulsive piece. 
The effective propagator z,(z) in Eq. (3.3) has its origin in the two-particle trans- 

ition matrix t,. We write 

where 

t,(4,4’; 2) = d,(s) z,(z) &n(d)> (3.10) 

q* 4 I 
-1 

(q2+gJ2(q2-z) . (3.11) 

In the spin-triplet (m = t) configuration z,(z) has a bound state pole at z = --E. This 
gives ;1, = -2/?&I, + K)~. For z along the real axis, z = - t2 + i0, 5 > 0, the pole 
structure of this function can be written 

T (-52)= - 2 s(a f 4+&-io’ 

where 

(5 + B,)’ 
S(tJ=a(a+pJC1 +2P,l(a+t5)1’ 

(3.12) 

(3.13) 

The denominator in Eq. (3.12) leads to a Cauchy-type singularity ( p’2 - k2 - i0) + ’ 
in the kernel of Eq. (3.3). 

An additional logarithmic singularity structure in the kernel of Eq. (3.3) leads to 
a C, discontinuity in the three-body transition amplitude. A discussion of this non- 
smooth behaviour is given by Larson and Hetherington in [IS]. For completeness, 
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we describe in the appendix an alternative derivation of the cusp singularity, based 
on an analysis of the logarithmic integrands in the kernel of Eq. (3.3). This com- 
pletes our description of the three-body integral equations. 

4. NUMERICAL PROCEDURE 

This section describes our numerical procedure for solving the integral equation 
in Eq. (3.3). 

In order to construct the spline basis, we first map the momentum variable 
p E LO, co) onto a finite interval [ - 1, i- 11, using 

1 +x 
p(x)= l-x 3 ( > XE[-1, +I] (4.1) 

We partition this interval I-1, +l] by N knots -I=x,<x,<x~~~~x,~= i-1, 
with mesh spacing h, = max ((xI+ , -xx,); 1 < i-c N). Three of the knots are placed 
in coincidence at p,.(s) = a. This will ensure that the spline approximate solution 
to Eq. (3.3) has C, discontinuity at pc. On this partition, together with the extended 
knots x-~<x~~<x~<.x~ and x~<x~+~<x~+~<x~+~, we construct a basis of 
N + 2 cubic B-splines { Bi; i = O,..., N + I }, using the method of Cox and de Boor 
[121. 

The approximate transition amplitude Tjz’ is given by the cubic spline 

Nil 

T$ (p(x);E+ iO)= c a,,(E+ i0) B;(x), 
i=O 

(4.2) 

where ja,;(E + i0); i = O,..., n + 1; m = t, s} are complex spline coefficients. These 
coefficients are obtained from a solution of the linear system of equations 

N+l 

mF, f jFo ami(E+ jO)C(& B;) d,,i 

+ A,,,(E+ iO)] = C,(E+ iO), j = O,..., N + 1, IE = s, 1. (4.3) 

Here, Ami.ni is a moment integral of the kernel Y,, in Eq. (3.3) 

A,,,(E+ fo) = 2 j’, j;, Y,m(p(x),p’(.~‘); Ef io) 

x Bi(X) Bj(X’) dx dx’, 
(1-x’)’ ’ 

and 

C,(E+ iO)= J' Z,,(p(x),k;E+ i0) B,(x)dx. 
-1 

(4.4) 

(4.5) 
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In practice, the numerical evaluation of the integral in Eq. (4.4) is difficult, 
because the integrand contains both logarithmic and Cauchy-type singularities. For 
integration over the logarithmic singularities, we break up the region of integration 
and use a standard Gauss-Legendre quadrature formula. A method of subtraction 
[14] is used to integrate over the Cauchy singularities. 

An iterative improvement Fm, (NJ to the spline approximation 7’;:) is obtained from 
the spline expansion coefficients (a,,; i = O,..., N+ 1; m = s, t} by the formula [ 171 

N+l 

T$'(p;E+ iO)= Z,,(p, k; E+ iO)-c c a,,@+ iO)D,,,Jp;E+ iO), (4.6) 
n i=o 

where 

D,,Jp; E+ iO)= 2 J1 (4.7) 
-1 

Y,,(p,p'(x');E+ i0) (pii2y)2 fix'. 

The integral in Eq. (4.7) is one-dimensional and therefore easier to evaluate than 
the integral of Eq. (4.4). 

~NUMERICAL RESULTS AND DISCUSSION 

We obtain numerical results for both the three-boson and three-fermion systems 
described in Section 3 using the numerical procedure described in Section 4. These 
numerical results are compared with a reference solution obtained by solving the 
three-body integral equations with a Padt method [S]. 

I I I I I 

002 

p(fm-‘1 

FIG. 1. Real part of the half-shell transition amplitude for a three-boson system. The solid curve is 
the reference solution, the broken curve is for N = 9, and the dotted curve is for N= 19. The knots are 
uniformly spaced. 
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I L-8 i I 
0 04 0.8 12 

p(fm-‘1 

FIG. 2. Imaginary part of the half-shell transition amplitude. Curves as labelled in Fig. i 

For our numerical example we have chosen parameters for the two-particle 
potential given by Eq. (3.11 to be p,=1.4498fm-‘, ;I!= -&1978fm-‘, 
j,= 1.1648 fm-’ and 3,,* = -2.9471 fm - 3. These parameters are chosen so that the 
Yamaguchi potential will approximately describe low energy neutron-proton scat- 
tering in the s-wave spin-l (t) and spin-0 (s) channels. 

I I I I I 1 

I I I I I I 
0 0.4 0.8 12 

p (fm-‘1 

FIG. 3. Real part of the half-shell transition amplitude for a three-boson system. The solid curve is 
the reference solution. The broken curve is for N = 9. The knots are non-uniformly spaced. 
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Our first results are for the three-boson system. In order to get an impression of 
the robustness of the algorithm we have tried several different distributions of the 
knots. In each case three knots are placed in coincidence at the position of the C, 
discontinuity. We are, however, free to choose the position of the interior knots in 
each of the two sections between the C, discontinuity and the end points of the 
interval x E [ - 1, 11. 

We first consider uniformly spaced knots. Figures 1 and 2 illustrate the real and 
imaginary parts of the L = 0 half-shell transition amplitude at a scattering energy 
E = 4s. Only a finite interval along the p-variable from 0 to 1.2fm - 1 is shown. This 
interval includes the on-shell value of the momentum k = 0.5981 fm ~’ and the C, 
discontinuity at p, = 0.5349fm - ‘. The approximate spline solutions with N = 9 and 
N = 19 are indicated by broken and dotted lines respectively. For N = 9 we have 
only two interior knots in each section. It is observed that, even with such a small 
number of uniformly spaced knots, it is possible to determine the structure of the 
solution to the integral equation. When the number of knots is increased, the 
solution shows a better agreement with our reference solution. 

In the case of functions with singularities it is known that good interpolation can- 
not be obtained with uniformly spaced knots. On the other hand, as shown in the 
Appendix, the solution has a square root term, d=, at the C, discontinuity. A 
recommendation [18] for the optimal approximation of a square-root function by 
cubic splines on the interval [0, l] is to use the following formula for the knots; 

tj =j/(P + 1)X, j = o,..., P + 1, 

where P denotes the number of free knots counting multiplicities. 

(5.1) 

I I I I I 
0 04 08 12 

p(fm+ ) 

FIG. 4. Imaginary part of the half-shell transition amplitude. Curves as labelled in Fig. 3. 
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TABLE I 

Approximate Solution for a System of Three Identical Bosom 

N 

9 
11 
13 
15 
17 
19 
21 

Uniform Non-uniform 

II TN- T/l2 II TN- Tllz II TN- Tll, II T‘V - Tll 2 

0.865 0.339 0.230( 1) 0.185 
0.500 0.277 0.155(l) 0.994( - 1) 
p.297 0.202 0.938 0.384( - 1) 
0.193 0.150 0.498 0.446( - 1) 
0.152 0.128 0.201 0.333( - 1) 
0.140 0.126 0.299( - 1) 0.244( - 1) 
0.137 0.126 0.120 0.186(-l) 

Note. The L, error norm for several choices of knots with both uniform and non-uniform spacing 
is shown. The Galerkin solution TN and iterative improvement T, are compared with a reference 
solution T. 

Figures 3 and 4 illustrate the real and imaginary parts of the half-shell transition 
amplitude with non-uniformly spaced knots (5.1). The approximate solution with 
N = 9 is indicated by the broken line. The result with N = 19 is indistinguishable 
from the reference solution on these figures. It is seen that when the simple knots, 
i.e., those not in multiplicities, are chosen in accordance with the formula in 
Eq. (5.1), then the C, discontinuity is reproduced accurately, even with a small 
number of knots. 

I I i I.--J 
0 04 0.8 12 

p(fm-‘1 

FIG. 5. Half-shell transition amplitude for three spin-j particles in a quartet spin configuration. The 
solid curve is the reference solution. The broken curve is for N = 9 with non-uniformly spaced knots. 



396 ALAYLIOGLU ET AL. 

1 I I I I I 
0 04 08 1.2 

p(fm-‘1 

FIG. 6. Half-shell transition amplitude T,, for three spin-j particles in a doublet spin configuration. 
Curves as labelled in Fig. 5. 

Table I shows the convergence behaviour of the three-boson transition amplitude 
using both the uniform and non-uniform meshes. The L, norm is used to describe 
the convergence as the number of knots N is increased. Both the Galerkin solution, 
TN, and the iterative improvement, T,, given by Eq. (4.6), are compared with our 
reference solution. For a given number of knots the iterative improvement performs 
better, and in the case of non-uniform spacing much better, than the Galerkin 
solution. The greater accuracy of the iterative improvement in the case of non- 
uniform spacing can be attributed to the fact that this mesh reproduces the C, dis- 
continuity more accurately than the uniform mesh. 

We next turn our attention to the three-fermion case. Figure 5 illustrates the 
L = 0 half-shell transition amplitude for the quartet spin configuration, again at the 
scattering energy E = 4~. Also shown is the Galerkin solution with N = 9 on a non- 
uniform mesh. The solution with N = 11 is indistinguishable from the reference 
solution on this figure. The corresponding result for the doublet spin configuration 
is illustrated in Fig. 6. In the doublet case we solve a set of coupled integral 
equations for the transition amplitude T,, and T,,. 

Our numerical results demonstrate that accurate results can be obtained with 
only a small number of basis functions. Moreover, the algorithm is invariant to the 
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mesh structure, and it performs well with an arbitrary distribution of simple knots. 
Given a square-root behaviour in the solution function, we introduce properly 
spaced knots for the interpolating spline. This is shown to reproduce the non- 
smooth behaviour accurately. It must be noted that our numerical technique allows 
for the positioning of simple knots, as well as triple knots, with no special effort. 
Hence, the generality and versatility of the algorithm makes it worthwhile as an 
alternative accurate method for solving integral equations that describe three-body 
scattering above break-up. 

APPENDIX: C, DISCONTINUITY IN THE HALF-SHELL AMPLITUDE 

The three-body half-shell amplitude T,,(p; E + i0) has a C, discontinuity at 
momentum p, = ,J$%. This C1 discontinuity results from the integration of 
logarithmic singularities in the effective potential Z,,( p, p’ : E + i0) defined by 
Eq. (3.5). In this appendix we describe the origin of the C, discontinuity and its 
singular behaviour. 

We first perform the integration in Eq. (3.5). We denote by Zp the principal 
value part of this integral and write 

4L( P, P’i El = - (R, _ E) [St&, R,,) -St&, E)], (Ai) 

where 

Here, 

R,-R,(p)=$p’-Pi, 

R, = R,( p’) = 1 p” - p,‘,. 

S(s, t) = - 1 (A+ -s)(A- -t) 
2ppGb (A--s)(A+-t) ’ sft 

1 
(1231 

and 

= - (A + - r)(A _ - t)’ 
.T=t 

where A I > 0. 
At positive energies, E >O, logarithmic singularities are contained in the terms 

F+(p,p’;E)=ln IA, -El, (A51 

K(p,p’;E)=lnlA--El, (A61 
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where, for simplicity, we have suppressed a multiplicative factor involving the 
parameters pm and /In. Integration of the logarithmic singularity in Eq. (A5) does 
not result in any C, discontinuity, and we concentrate on the logarithmic term in 
Eq. (A6). The singularities in Eq. (A6) occur on the real axis of the $-integration 
only when p <p, and p’ <p,. Thus, to study the origin of the C1 discontinuity, the 
integral over p’ need be taken only to the upper limit pc. 

We are thus led to examine the integral 

I(u)=!“’ ln(u2+ v2 - uv - ;) Y(u, v) dv, (A7) 
0 

where we have introduced dimensionless variables u =p/pc and v =p’/p, and Y is a 
smooth function of U, v obtained from the remaining factors. 

We first consider the special case !P(u, v) = 1, and write 

(A81 

= ‘ln[v-$~)~+f(~~-l)] dv, 
s 

u> 1. 
0 

Then, from standard tables of integrals [ 191, we obtain the result 

(24-i)” 
I(u)=21n(u-+)--&In 2 

I I u -i 
-2+1((u) 

where 

(1 - $U + a)($ + a) 
r(“)=aln (l-$u-a)(+u-a) ’ u<l 

=2Z7[tan1(T)+tanP’(t)j, u>l 
(A101 

and 

.=JgcF), b=Jpzj. (All) 

Although I(U) is continuous with the value -2(ln2 + 1) at u = 1, its derivative is 
discontinuous. It is a simple exercise to show that 

dI 1 
ii?=> 

for u> 1. 

Hence, we find the result that the derivative of I(U) is infinite at the point u = 1 + E 

as E -+ 0. 
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More generally, if !P(u, V) is a smooth function of v, we expand Y in-the form 

y-7(& 0) = f a,(u)(v - $p + f b,(u)(v -%42n+ I. (A13) 
n=O *=O 

The even terms in this expansion, i.e., those under the first summation, lead to an 
integral in Eq. (A7) ( see [19]) with a similar discontinuity in the derivative as was 
found in the case Y(u, u) = 1. Thus, in general, the integral in Eq. (A7) has a square 
root singularity (p-p,)“’ at p=p,. 
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